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• Terrestrial planet composition affects interior properties, such as core size, mantle viscosity, and mantle melting 
behaviour.

• Bulk composition may therefore affect volatile exchange between interior and atmosphere, and may be 
profound to understanding atmospheric composition.

• Models of planet interior and interior-atmosphere interaction have not considered bulk interior composition so 
far. First step: constrain diversity in bulk planet compositions.

• Stellar abundances: significant compositional diversity in Solar neighbourhood.

• Aim: Constrain range of bulk terrestrial exoplanet compositions based on stellar abundances.



From stellar to planetary compositions

Figure 1: Devolatilization trend2. The elemental abundance ratios
between Earth and Sun, f = XEarth/XSun, normalized to a very
refractory element (Al), is plotted against the condensation
temperature of each element3. It shows a trend of increasing
depletion for more volatile elements.

• Stellar abundances from Hypatia catalogue1

• Exoplanet compositions based on compositional 
(devolatilization) trend between Sun and Earth (fig. 1)2

• Apply trend to simulate hypothetical rocky exoplanets 
with the same formational history as Earth, around stars 
in Hypatia catalogue

Figure 2: Compositions of stars (blue) from the Hypatia catalog1 and the
corresponding planetary compositions, after applying the devolatilization
trend2.



Planet compositions
Mantle compositionsBulk compositions

• We consider elements O, Na, Mg, Al, Si, S, K, Ca, Fe, Ni.

• Core-mantle differentiation: 2 methods
• Similar oxygen fugacity as Earth4: same bulk Fe/FeO
• Base oxygen on stellar oxygen abundances. Assume 

that most planets have a metallic core, and some 
iron in the mantle.

• Combine them for more comprehensive method

• Core composition5: Fe/Ni = 18±4; 6 wt% Si, 2wt% O, all S

Figure 3: Core sizes (in
mass fraction) of
simulated planets, as a
function of bulk planet
Fe+Ni weight fraction.
Dashed line is maximum
core size of pure Fe+Ni
core. Sizes are larger
because of presence of
O, Si, and S in core.

Figure 4: Mantle iron
content, in wt%. The
values are shown for
simulated Earth (red) and
Earth data5 (black), for
comparison.

Figure 5: Mantle molar
Mg/Si ratios. The values
are shown for simulated
Earth (red) and Earth
data5 (black), for
comparison.



Discussion
• Effects of composition: Mantle Mg/Si is an important

control on mantle viscosity6, which controls thermal
and dynamical evolution of the interior. Mantle Fe
content affects melting behaviour of the mantle7.

• Formation: We assume Earth-like formation. Focuses
on habitable zone planets. Venus- or Mars-like
formation changes devolatilization trend, changing
volatile element abundances. Can be done with our
methodology by changing trend.

• Core size: We present results here for a single core
composition. While this is dependent on formational
processes, it is not likely to change the range of mantle
compositions significantly.

• Interior modeling: Previously, we studied compositional
effects on terrestrial planet evolution for a simple
compositional model, in a 1D setting8. We have now
updated the compositional model, and will continue
with 2D studies in the near future.

• Compositional range: We present the likely range of
bulk terrestrial exoplanet compositions in the Solar
neighbourhood, and recommend using these statistics
for future research into compositional effects in
terrestrial planets.
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